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A " systemic" method of integrating differential equations is used for working out a p rocess  for 
the numerica l  calculation of nonstat ionary p rocesses  using electronic computers .  

P rob lems  relating to the use of computers  for the numerica l  solution of equations describing a non- 
stat ionary p rocess  in separating cascades  have been discussed in [1-5]. However, the mathematical  methods 
used in these studies ei ther  require  too much machine t ime or  have a l imited region of pract ica l  applicability. 

we  have made an attempt to const ruct  a mathematical  model which descr ibes  sufficiently completely a 
nonstat ionary p rocess  taking place in cascades  of a rb i t r a ry  profile and to work out methods to use it on an 
electronic computer  for rapidly obtaining solutions over  an a rb i t r a ry  range of concentrations.  

As a rule, all separating installations consist  of sections with constant flow between stages; i .e . ,  they 
are squared-off  cascades.  If there is a sufficiently large number of sections, the profile of the flow in a 
cascade is taken to be close to the profile of an ideal cascade.  The use of an ideal -cascade model makes it 
possible to simplify considerably the calculation of nonstat ionary p rocesses  taking place in multistage instal la-  
tions. Therefore ,  for a solution of pract ical ly  all separat ion problems,  it is sufficient to investigate the 
cases  of squared-off  cascades  and ideal cascades.  

We consider  a squared-off  cascade used for separating a two-component isotope mixture by the single- 
phase method. Suppose that at some intermediate  point of the cascade there is an input flow F and from the 
ends of the cascade we remove the flows P (product) and W (waste). The quantities P, F, and W may be func- 
tions of t ime but must  satisfy the following balance equation: 

F = P + W. (1) 

The t r ans fe r  of the valuable component in the direction f rom the waste outlet to the product  outlet for 
the enriching and stripping par ts  of the cascade,  respect ively,  can be written in the form 

Oc (2) 
j = - -  L + eLc(1 - - c )  ~ Pc, 

Os 

j = - -  L Oc + e L c ( 1 - - c ) - -  Wc. (3) 
Os 

Substituting (2) and (3) into the fundamental equation describing the nonstat ionary p rocess  [6] 

Oc 
pL div j 

Ot 

and writing 

(4) 

e~t 
l : e s ,  T = , G = e L ,  ( 5 )  

P 
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Fig. 1. Kinetic curves  of squared-off  and ideal cascades  in a regime 
with the product  outlet constantly connected: 1) s ingle-sect ion cascade 
(~ = 0.6); 2) two-sect ion cascade (~ = 0.83); 3) four-sec t ion  cascade 
(7 = 0.95); 4) ideal  cascade.  

Fig. 2. Kinetic cu rves  of an ideal cascade when the product  outlet is 
connected at different instants of time. Points 1, 2, and 3 cor respond  
to the t imes  at which the product outlet is connected. 

we obtain 

Oc m-0l 20~c Oc8l ( I+p-G 2c), (6) 
Oc _ O~c Oc (1 W 2c).  (7) 
O~ Ol 2 01 G 

Equation (6) holds for all the sections of the enriching par t  and (7) holds for the stripping par t  of the 
cascade.  The connection between the nons ta t ionary-process  equations at the "junction" point between adjacent 
sections can be obtained f rom the condition of conservat ion of mass  t ranspor t  at that point: 

Gi Oc- Gi+10c+ --(G~--Gm)C*(I--c*)=O , (8) 
0-7-- 

where the signs "+" and "--" denote the derivative on the left and on the right of the "junction" point, respec-  
tively. 

If at the "junction" between the i- th and (i + 1)-th sections there is an input flow, then Eq. (8), taking 
account of (1), can be rewri t ten in the form 

G~ Oc- Gi+ 10c+ --(G~--Gi+I)ct(1 --el) = (c]--%)(P +W). (9) 
oT -  

The boundary conditions for the ends are  obtained from the following equations: 

h = - ~% (~), 
]~ =Pcp (~). 

Substituting (2) and (3), r e spec t ive ly ,  

(10) 

(11) 

into (10) and (11), we rewrite the boundary conditions in the form 

Oc I =c(1--c)h=o, (12) 
01 l=o 

0c01 l=lp -- C(1 --c)ll=lp . (13) 

Fo r  a solution of the boundary-value problem we also must  specify the initial condition in the form of a 
distribution of concentrat ion along the cascade at t ime 0. In par t icular ,  if the cascade is filled with a homo- 
geneous mixture whose concentrat ion is eF, the initial condition takes the form 

C(l, 0) = %.  (14) 

Equations (6) and (7), together  with the "junction" conditions (8) and (9), the boundary conditions (12) and 
(13), and the initial condition (14), fo rm a boundary-value problem describing the nonstat ionary p rocess  of 
separat ion taking place in a squared-off  eascade. 
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The equation describing the nonstationary process  in an ideal cascade has the form [6] 

Oc _ OZc ( OlnG P 1 +  2c) 0c - - c O - - c ) O l n G  (15) 
or oz ~ -  ~ - - 0 7 -  c -gi- o--T-" 

If the waste point is taken as the origin of our coordinate system,  the flow distribution in the stripping 
and enriching par ts  of the cascade will have the form 

1 + ~exp . -  

! - - 2 ~ ;  (17) G =  2P . ' . -  l~ ~ 
1 + ~exp - - - 2 - - - /  

O~c 
012 

where #% = CF/(1--CF). 

Substituting (16) and (17) into Eq. (15), we obtain 
Oc 
0~ 

OC 

Ot 

+ 1~2c / + 

J 

2 [exp ( - - / )  + Fexp ( - -  ~ - )  ] [ 1 -- exp ( - - / ) ]  

~t exp ( ! - -  l~ 

2 [exp ( - - / )  + Fexp ( - -  ~ - ) ]  [1 - -  exp (~/2 

Oc O~c ac 
O~ Ol = Ol 

c(1--c), (18) 

oxp( ' - - '  1 
_~ 2 / 2 / (19) 

�9 c ( 1  --c), 

where the coefficients p, w are  equal to unity if the cascade includes the product outlet or the waste outlet, 
and equal to zero,  otherwise. 

Since the flow values for the enriching and stripping parts at the point of input in ideal cascades are 
equal, the "junction" condition for Eqs. (18) and (19) takes the simple form 

( Oc + 0c- ) l=ltv = P + W  (20) 
Ol Ol (c / - -  cF) G (l~---)- 

The boundary and initial conditions (12), (13), and (14) also hold for an ideal cascade. 

In calculations for cascade installations based on the use of revers ib le  methods, such as distillation or 
chemical  exchange, we must  take account of the p rocess  of accumulation of an isotope in the phase - reve r sa l  
devices. In this case the equations have a form analogous to (6) and (7), and the "junction" and boundary 
conditions can be writ ten in the form 

G, Oct_ _ G,+, Oc---/-+ --  (G, - -  G,+0 c* (1 --C*) + E~ dc_~* = 0, (21) 
Ol Ol dt 

1085 



G Oc (22) 1 - ~  t=o--Glcw(  1 - - cw)  = Eo dcw - - ~ ,  

OC I=Iw+I P 
- -  GN - ~  +G~-ce(1--ce) = E dcp (23) 

dt 

We have shown that in the cases  under considerat ion the nonstat ionary separat ion p rocess  can be 
descr ibed by a nonlinear boundary-value problem, where the "junction" and boundary conditions can be given 
in the form of ordinary  differential  equations. In the genera l  case an analytic solution of such boandary-value 
problems i s  impossible.  Moreover ,  the complex s t ruc ture  of the equations requi res  the development of 
special  methods of solution and the construct ion of a form of mathematical  model that is suitable for use on an 
electronic computer .  

In the present  paper  we investigate a different ial-difference model for  the equations of the nonstat ionary 
process .  This model may be regarded  as the limiting case  of a network model, when one of the l inear dimen- 
sions of the network (in this case  the dimension along the t ime coordinate) approaches zero. In the l i te ra ture  
this model  is known as the "method of s traight  lines" [7]. 

The essence  of this method as applied to our boundary-value problem is that the interval  of the varia-  
tion of the coordinate l for each section Of the cascade is divided into n par ts  with step h and a family of pa r -  
allel lines is drawn through the in ter ior  points of division. On each line the par t ia l  differential equation is 
replaced with an ordinary  differential  equation for  the function c (ti + kh, r) = c~(v). Thus, the boundary-value 

problem is reduced to a Cauchy problem for  a system of ordinary  differential equations with time as the 
independent variable. 

For  the transi t ion to the Cauchy problem we replace the f i rs t  and second derivat ives on the selected 
lines with symmet r i c  f ini te-difference relat ions [8] 

Oc__~ = Ck+l--Ck_1 , (24) 
Ol 2h 

O~c___~k =- ck+~ - -  2c~ + ck_ 1 (25) 
Ol ~ h* 

At the "junction" points between the sections and at the ends of the cascade formula  (24) calmot be used, 
since at these  points we have only one-sided derivatives.  The choice of difference formulas  for  represent ing 
one-sided de r iva t ives  is a mat te r  of theoret ical  importance and significantly affects the accuracy  of the cal-  
culation, since the relat ions (8), (9), (12), and (13) close the system of differential equations. Good resul ts  
have been obtained by using the Adams--Bashfor th  and Adams--Moulton [9] second-degree  difference formulas  
for the beginning and end of the interval ,  respectively:  

c2 = Q ~ 2 h (3c~--Co), (26) 

1 
c~ = c~_ 1 § ~- h (c;, - -  c~_,) ; (27) 

! 

where the derivat ives  at the in ter ior  points c~ and Cn_ 1 are calculated by the formulas  of (24). 

Substituting (24) and (25) into Eqs. (6) and (7), we obtain a system of ordinary differential equations 
describing the nonstat ionary p rocess :  

dc~ =f(c~+~, c~, c~_~), l ~ i ~ N ,  0 ~ k ~ n .  (28) 

Substituting (24), (26), (27) into (8), (9), (12), and (13) and taking account of the conditions for continuity 
of concentration,  we obtain the following functional relationships:  

f(c~, ~ c~ c~-1, n-~, c~ +l , c~+')= 0, 

f (c j ,  c~ " c i c,i=-' c ! 7 1 ) = 0 ,  

f ( c  W, c I , c~)= O, 

f ( c , ,  C ,  c;v_~) = 0 

(29) 

(30) 

(31) 

(32) 
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i i 
If in the f i r s t  and l a s t  equat ions of (28), for  each  sect ion,  we express the values  of c o and c n f rom the 

co r respond ing  fo rmu la s  (29)-(32), we can c lose  the sy s t em of d i f fe ren t i a l  equations.  

Thus,  the nons ta t ionary  sepa ra t ion  p r o c e s s  in the c a s c a d e s  can be d e s c r i b e d  by a sy s t em of o rd ina ry  
d i f fe ren t i a l  equations (28), sa t i s fy ing  the r e l a t i ons  (29)-(32) and the in i t i a l  condit ions 

c~ (0) ----- c F . (33) 

F o r  r e v e r s i b l e  methods  of sepa ra t ion  the sy s t em (28) i s  supplemented  by d i f fe ren t ia l  equations which 
, 

can be obtained without diff iculty f rom (21)-(23). In th is  case  the p a r a m e t e r s  ci ,  cp ,  and c W will  be unknown 
functions.  

It is  inadvisab le  to solve the resu l t ing  sy s t em by t r ad i t i ona l  methods  of the Runge--Kutta  type,  s ince 
the l a r g e s t  in tegra t ion  step a d m i s s i b l e  f rom the viewpoint  of s t ab i l i ty  of the computat ion p r o c e s s  will  be too 
small. 

In the present paper we use a so-called "systemic" method for the numerical solution of differential 
equations [i0], which takes account of the general properties of the system being solved and enables us to use 

an integration step considerably larger than with the classical methods. 

According to this method, the algorithm for solving the system (28) can be represented as follows: 

c h (mAT + AT) = c k (mAx) + r (A, AT) [i (mAT, ck), m ---- 0, l, 2 .... (34) 

Here A~ is the time step; ~(A, AT) is the stabilizing matrix; A = 3fi/3c j is the Jacobi matrix. 

In order to construct the stabilizing matrix, we make use of the following recurrence relation: 

r = r (21 + AdPq),  q = O, 1 . . . . .  M - -  1, 
(35) 

Y. r 6 (A6F 6 :  A ~  
(7-+-I)! ' 2 M ' 

'7~0 

where  I i s  the unit mat r ix .  

The use of the " sys t emic"  method enables  us to i n c r e a s e  the in tegra t ion  step by a f ac to r  of 20-30 in com-  
pa r i son  with the c l a s s i c a l  methods  and t he r e fo re  sharp ly  r educes  the computa t ion t ime .  The in tegra t ion  step 
may  be AT = 1, which enables  us to ca lcu la te  the nons ta t ionary  p r o c e s s  in the separa t ing  ins ta l l a t ion  p r a c t i -  
ca l ly  to the end a f te r  50-100 steps.  

We give below some r e su l t s  of n u m e r i c a l  ca lcu la t ions  c a r r i e d  out by the p roposed  method, using the 
sepa ra t ion  of neon i so topes  as an example .  F i g u r e  1 shows the va r ia t ion  with r e s p e c t  to t ime  of the non- 
s t a t iona ry  va lues  of the concent ra t ion  at the product  outlet  for  squa red -o f f  ca scades  with di f ferent  numbers  
of sec t ions  (curves  1, 2, and 3) and an idea l  c a s c a de  (curve 4), opera t ing  without a s t r ipping  par t ,  with a 
constant ly  connected ca lcu la ted  product  outlet.  F r o m  this  f igure  i t  follows that  as the eff iciency ~ i n c r e a s e s ,  
the k inet ic  c h a r a c t e r i s t i c s  of a r e a l  squa red -o f f  cascade  m e r g e  into the c h a r a c t e r i s t i c s  of an idea l  cascade ,  
which a g r e e s  comple te ly  with the data  of [11]. This  p roves  that  i t  i s  poss ib l e  to use the i d e a l - c a s c a d e  model  
for  ca lcula t ing  nons ta t ionary  p r o c e s s e s  taking place  in squa red -o f f  c a scades .  

The ca lcu la t ions  showed that  in o r d e r  to reduce  the t r a n s i e n t  t ime in cont rac t ing  c a s c a d e s ,  i t  is  d e s i r a b l e  
to have the p r o c e s s  take p lace  at the beginning with to ta l  re f lux  and to connect the product  outlet  some t ime  
a f te r  the ca lcu la t ed  concent ra t ion  i s  attained. The r eason  for  th is  is  that  when the product  outlet  i s  connected 
in an idea l  c a scade  in the t ime  in t e rva l  during which the t r ans i t i on  p r o c e s s  t akes  p lace  the re  i s  a min imum in 
the kinet ic  curve  (Fig. 2). In cons tan t -wid th  c a s c a d e s  the product  outlet  should be connected at the t ime  
when the ca lcu la t ed  concent ra t ion  i s  at tained,  s ince in th is  case  the concent ra t ion  value at the product  
outlet  r e m a i n s  p r a c t i c a l l y  unchanged. This  conclusion conf i rms  the r e s u l t s  of [12]. 

We also inves t iga ted  the nons ta t ionary  p r o c e s s  taking p lace  in c a s c a d e s  with a s t r ipp ing  par t .  The 
dynamics  of such c a s c a d e s  a r e  compl ica ted ,  s ince in nons ta t ionary  condit ions the "zero"  point (the point at 
which the concent ra t ion  i s  equal  to the input concentrat ion)  shif ts  along the cascade ,  and this  s ignif icant ly  
affects  the t ime  r e q u i r e d  for  the t r ans i t i on  p r o c e s s .  In p a r t i c u l a r ,  for  a cons tan t -wid th  ca scade  opera t ing  
with the p roduc t  and waste  out le ts  d isconnected ,  the shift of the "zero"  point may be so l a rge  that at the produc t  
point  we cannot obtain the ca lcu la ted  value of concent ra t ion .  The re fo re ,  for  such ca scades  the r eg ime  
of opera t ion  with p roduc t  and was te  out le ts  d i sconnec ted  should be c o n s i d e r e d  ineffect ive.  
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In an ideal  cascade  the r eg i m e  of opera t ion of one pa r t  of the cascade  has  l i t t le  effect  on the p r o c e s s  in 
the other  par t .  As a resu l t ,  t he r e  is  ve ry  l i t t le  shift  in the "zero"  point. This  enables  us to c a r r y  out the 
t rans i t ion  p r o c e s s  in a r eg i m e  with product  and waste  out le ts  disconnected.  When e i ther  of them is  con- 
nected,  we obse rv e  the s a m e  fea tu res  as in c a scades  without s t r ipping par t .  

N O T A T I O N  

p,  s tep delay; L, flow between s tages ;  c = c(s,  t), concentra t ion  of ex t rac ted  isotope at the s - th  stage at 
t ime  t; ~ = coeff icient  of en r i chment  of a s tage;  P, product  flow (extraction);  W, waste  flow; F, input ft0w; 
cp ,  concentra t ion  at product  point; cw ,  concentra t ion  at was te  point; cF,  input concentrat ion;  c*, concen t ra -  
tion at "junction" point be tween sect ions;  cf, concentra t ion  at input points;  ~W, number  of s tages  in s tr ipping 
p a r t  of the cascade  (in units of es);  tp ,  num be r  of s tages  in the ca scade  (in units of es);  El, inventory of i - th  
p h a s e - r e v e r s a l  device;  N, num ber  of sec t ions  in the cascade.  
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T H E O R Y  O F  

A C C O R D I N G  

T H E R M O D I F F U S I O N  S E P A R A T I O N  

TO T H E  F R A Z I E R  S C H E M E  

G.  D. R a b i n o v i c h  UDC 621.039.3 

A theory  of a thermodif fus ion  column with t r a n s v e r s e  sampling s t r e a m s  is  given on the bas i s  
of the t r a n s p o r t  equation for  a b inary  mix ture .  

Among the different  kinds of thermodif fus ion appara tus  of continuous action, the scheme proposed  by 
D. F r a z i e r  in 1958 to connect  thermodif fus ion  columns in which the sampl ing s t r e a m s  do not pass  through 
but move  outside the columns occupies  a spec ia l  place.  

The de l ivery  of the supply cre and ~i with concent ra t ions  c o is  accompl ished  at the  upper  and lower ends 
in a plane thermodif fus ion  column with gap 5, height L, and length B (Fig. 1), where  both s t r e a m s  can have 
the s ame  (Fig. la)  and opposi te  (Fig. lb) direct ions.  Sampling of the product  i s  c a r r i e d  out at the ends op-  
posi te  to the supply entrance.  
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